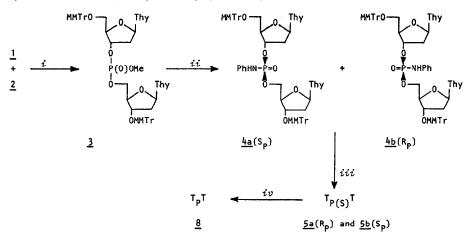
THE CHEMICAL SYNTHESIS OF THE R_P AND S_P DIASTEREOMERS OF THYMIDYL-(3'-5')THYMIDYL 0.0-PHOSPHOROTHIOATE

Bogdan Uznański, Wojciech Niewiarowski, Wojciech J. Stec*

Polish Academy of Sciences, Centre of Molecular and Macromolecular Studies, Department of Bioorganic Chemistry, 90-362 Łódź, Boczna 5, Poland

Abstract: The synthesis and separation of diastereomers of protected thymidyl- $(3^{\circ}-5^{\circ})$ thymidyl 0,0-phosphoranilidate $(\underline{4})$ allowed to obtain in the stereospecific manner title compounds $\underline{5}$, whose absolute configuration at P atom was assigned enzymatically. $T_{P(S)}^{T}$ diastereomers $(\underline{5})$ were obtained independently via "phosphite" procedure.


The stereochemical approach to the elucidation of the mode of action of the enzymes responsible for the nucleotidyl- and phosphoryl- transfer reaction led to a growing demand of stereospecific method of the synthesis of nucleoside P-chiral phosphates and phosphorothioates.

Although such compounds have been prepared before, there are only two reported examples of the chemical synthesis of the separated diastereomers of uridy1(3'-5')adeny1 0,0-phosphorothioate 2 and adeny1(3'-5')adeny1 0,0-phosphorothioate 3 . The absolute configurations of diastereomers of the above mentioned compounds were established by their reaction with RNase A 2 and bovine phosphodiesterase 3 , respectively. The modified nucleotides which contain chiral P atom have been applied successfuly for the stereochemical study of the action of the enzymes 4 and in genetic engineering 5,6 .

To pursue this aim we undertook some efforts to synthesize diastereomers of thymidyl-(3'-5')thymidyl 0,0-phosphorothioate $(T_{P(S)}T)$ of known configuration at P atom by means of phosphodiesteramidate approach elaborated in this Laboratory 7,8 . The mixtures of unseparated diastereomers of $T_{P(S)}T$ were originally obtained by Eckstein 9 , Smrt 10 and on independent way by Leśnikowski et al. 11 .

The substrate, 5'-monomethoxytritylthymidyl(3'-5')-3'-monomethoxytritylthymidyl 0-methyl phosphate (3) was obtained according to the method described in the literature 12 . Thus, 5'-monomethoxytritylthymidine (1) was condensed with 3'-monomethoxytritylthymidine (2) by means of MeOPCl₂ in THF solution in the presence of collidine and intermediary phosphite was oxidized by means of I_2/H_2 0/THF mixture. The yield of 3 was 82%. Any attempts of separation of 3 into individual diastereomers have failed. The 0-methyl group was removed after overnight storage of 3 in t-BuNH₂ solution 13 . 5'-monomethoxytritylthymidyl(3'-5')-3'-monomethoxytritylthymidyl phosphate, obtained in 91% yield, was converted into its pyridi-

nium salt using Dowex (Py⁺) column and, under conditions of Appel's reaction (Ph₃P-CCl₄-PhNH₂) ¹⁴, this last compound was transformed into the mixture of 5'-monomethoxytritylthymidyl (3'-5')-3'-monomethoxytritylthymidyl phosphoranilidates ($\frac{4a}{4a}$ and $\frac{4b}{4b}$). These diastereomers were easily separated on preparative TLC (silicagel plates 60 F₂₅₄, solvent system CHCl₃-96%EtOH, 100:6, triple development). The purities of the diastereomers of $\frac{4a}{4a}$ (yield 28%) and $\frac{4b}{4b}$ (yield 25%) were confirmed by means of $\frac{31}{4a}$ P-NMR: $\frac{4a}{4a}$, $\frac{8}{4a}$, $\frac{8}{4a}$, $\frac{8}{4a}$ (silicagel plates 60 F₂₅₄, solvent system CHCl₃-96%EtOH, 100:6), $\frac{82.3}{4b}$ ppm(CHCl₃); $\frac{4b}{4b}$, $\frac{8}{4a}$, $\frac{8}{4a}$ 0.28, $\frac{8}{4a}$ 0.8 ppm (CHCl₃). Each of the diastereomers $\frac{4a}{4a}$ and $\frac{4b}{4b}$ was separately converted with NaH/CS₂ in DMF solution into 5'-monomethoxytritylthymidyl(3'-5')-3'-monomethoxytritylthymidyl 0,0-phosphorothioates; thus, from $\frac{8}{4a}$ 0 compound $\frac{5a}{4a}$ 1, $\frac{852.3}{4b}$ 2 ppm(CHCl₃), was obtained in 85% yield. $\frac{85200}{4b}$ 3 was converted to compound $\frac{5a}{4b}$ 3, $\frac{854.3}{4b}$ 3 ppm(CHCl₃) in the yield of 76%. Both $\frac{5a}{4a}$ 3 and $\frac{5b}{4b}$ 3 after treatment with 80% acetic acid, gave desired diastereomers of title compound $\frac{5a}{4a}$ 3 and $\frac{5b}{4b}$ 4, in yield 70% and 72%, respectively (Scheme 1).

i - MeOPCl $_2$ /THF/collidine; I $_2$ /H $_2$ 0. ii - t-BuNH $_2$; CCl $_4$ /Ph $_3$ P/PhNH $_2$; separation of diastereomers. iii - NaH/CS $_2$ /DMF; 80% AcOH. iv - ClCN/H $_2$ O/THF:

The same compounds were obtained on alternative route, analogous to that reported earlier for the preparation of $U_{P(S)}A^2$ and $A_{P(S)}A^3$. This approach is depicted in Scheme 2. Thus $\underline{1}$ and $\underline{2}$ were condensed by means of methyl phosphorodichloridite in THF solution in the presence of elemental sulfur, and resulting 5'-monomethoxytritylthymidyl(3'-5')-3'-monomethoxytritylthymidyl-0-methyl 0,0-phosphorothioate ($\underline{6}$) was isolated as crude product in 96% yield, and separated by short column filtration (silicagel 230-400 mesh, eluent system Et0Ac-benzene -iPr0H, 1:2:0.2) into diastereomers: $\underline{6a}$ "fast", $\delta 69.5$ ppm(CHCl $_3$), yield 24%; and $\underline{6b}$ "slow", $\delta 69.2$ ppm(CHCl $_3$), yield 25%. The reaction of each isomer of $\underline{6}$ with t-butylamine 13 led to the products of demethylation ($\underline{7}$, retention of configuration at P atom), which were identified by means of 31 P-NMR: $\underline{7a}$, "fast", $\delta 52.6$ ppm(CHCl $_3$); $\underline{7b}$, "slow", $\delta 54.9$ ppm(CHCl $_3$). These methyl-t-butylammonium salts of 5'-monomethoxytritylthymidyl (3'-5')-3'-monomethoxytritylthymidyl 0,0-

i - MeOPCl₂/S₈/THF/collidine. ii - separation of diastereomers; t-BuNH₂. iii - 80% AcOH. phosphorothicates (7) were converted, after removal of the protecting groups with 80% acetic acid followed by column chromatography on DEAE Sephadex A-25 and Dowex (H⁺) and neutralisation with 0.1N NaOH solution, into corresponding sodium salts 5a, $\delta 55.6$ ppm and 5b, $\delta 55.1$ ppm.

The corresponding diastereomers of dithymidyl phosphorothicate obtained on both alternative routes have shown to be identical by HPLC (5a has shorter retention time, eluent system MeOH-H₂O, 15:85). The oxidation of 5a and 5b by means of cyanogen chloride with an excess of water in the presence of collidine in THF gave thymidyl(3'-5')thymidyl phosphate (8) which was digested by snake venom phosphodiesterase, as expected, to thymidine 5'-phosphate and thymidine.

The absolute configuration at phosphorus in both diastereomers $\underline{5a}$ and $\underline{5b}$ has been assigned enzymatically. It has been established that phosphodiesterase from snake venom (E.C. 3.1.4.1.) possesses stereoselective hydrolytic activity towards phosphorothioate diesters of R_p configuration 15 . Each diastereomer $\underline{5a}$ and $\underline{5b}$ was separately treated with this enzyme in 100 mM Tris-AcOH, 20 mM MgCl₂ buffer, pH 8.0, and after overnight incubation at 37° C, the products of digestion were identified by means of 31 P-NMR, HPLC and TLC criteria (TLC, silicagel plates $60 \ F_{254}$, developing system CH₃CN-100 mM Tris-AcOH, pH 8.0, 10:1). Only diastereomer $\underline{5a}$ was hydrolysed to the thymidine 5'-phosphorothioate ($\underline{643.1}\ ppm$), what allowed us to establish the absolute configuration of this substrate as R_p . The products of the enzymatic oxidation were also observed in this process, in agreement with previous reports 2,3 . Under these conditions diastereomer $\underline{5b}$ was completely resistant towards hydrolysis.

In 31 P-NMR spectrum the signal corresponding to $R_p^{-T}_{P(S)}^{T}$ (5a) occurs at lower field than that of $S_p^{-T}_{P(S)}^{T}$ (5b), what in comparison with the data presented in other works 2,3,4 may suggest that chemical shift parameter is indicative of absolute configuration at phosphorus, if both diastereomers of $N_{P(S)}^{N}$ are available.

It should be noticed that the known stereospecificity of PN-PS conversion, which

takes place with retention of configuration at P atom 7 , allowed us to assign the absolute configuration of intermediate dithymidyl phosphoranilidates $(4a-S_p \text{ and } 4b-R_p)$. Also, the retention of configuration at P atom in the process of conversion of $\underline{6}$ to $\underline{5}$ allowed us to assign the absolute configuration to $\underline{6a}$ as R_p and to $\underline{6b}$ as S_p .

In the light of demonstrated conversion of phosphoranilidates into $|^{18}0|$ phosphates by means of NaH/ $|^{18}0|$ CO $_2$ $|^{16}$ or NaH/ $|^{18}0|$ C $_6$ H $_5$ CHO $|^{17}$, phosphoranilidates $|^{4a}$ and $|^{4b}$ can be applied for stereospecific preparation of diastereomers of thymidyl $|^{3}$ -5') thymidyl $|^{18}0|$ phosphate. These last compounds can be also obtained from $|^{5a}$ and $|^{5b}$ using one of the stereospecific procedures for PS-P $|^{18}0|$ conversion reported only recently by Frey $|^{18}$, Eckstein $|^{19}$ and Lowe $|^{20}$.

Authors are indebted to W.Lancaster (Phase Separation Ltd-England) for the gift of the analytical Spherisorb S5 ODS column for HPLC, and the Polish Academy of Sciences for financial assistance (Grant, no. MR-I-12.1.7.9.).

References

- 1. J.R.Knowles, Ann.Rev.Biochem., 49, 877 (1980)
- 2. P.M.J.Burgers, F.Eckstein, Nuc.Acids Res., Special Publ., $\frac{4}{2}$, s43 (1978)
- 3. J.F.Marlier, S.J.Benkovic, Tetrahedron Lett., 21, 1121 (1980)
- 4. R.S.Brody, S.Adler, P.Modrich, Z.J.Leśnikowski, W.J.Stec, P.A.Frey, Biochemistry, 21, 2570 (1982)
- 5. S.D.Putney, S.J.Benkovic, P.R.Schimmel, Proc.Natl.Acad.Sci.USA (Biochem.), 78, 350 (1981)
- 6. G.J.1de, Biochemistry, 20, 2633 (1981)
- 7. W.J.Stec, A.Okruszek, K.Lesiak, B.Uznański, J.Michalski, J.Org.Chem., 41, 227 (1976)
- 8. Z.J.Leśnikowski, J.Smrt, W.J.Stec, W.S.Zieliński, Bull.Acad.Polon.Sci., Ser.sci.chi., 24, 661 (1978)
- 9. F.Eckstein, Tetrahedron Lett., <u>1967</u>, 1157; ibid 3495
- 10. A.Małkiewicz, J.Smrt, Coll.Czech.Commun., <u>38</u>, 2957 (1973)
- 11. Z.J.Leśnikowski, Ph.D. Thesis, Łódź 1981
- 12. M.D.Matteucci, M.H.Caruthers, J.Am.Chem.Soc., 103, 3185 (1981) and references cited therein
- 13. D.J.H.Smith, K.K.Ogilvie, M.F.Gillen, Tetrahedron Lett., 1980, 861
- R.Appel, Angew.Chem., Internat.Edn., 14, 801 (1975); G.F.Mishenina, U.U.Samykov,
 L.N.Siemieniova, I.N.Shybina, Bioorg.Khim., 4, 735 (1978); J.Baraniak, R.W.Kinas,
 K.Lesiak, W.J.Stec, J.Chem.Soc., Chem.Commun., 1979, 941
- R.F.Bryant, S.J.Benkovic, Biochemistry, <u>18</u>, 2825 (1979); P.M.J.Burgers, F.Eckstein,
 D.H.Hunneman, J.Biol.Chem., <u>254</u>, 7476 (1979); P.M.J.Burgers, B.K.Sathyanarayana,
 W.Saenger, F.Eckstein, Eur.J.Biochem., <u>100</u>, 585 (1979)
- 16. J.A.Gerlt, J.A.Coderre, J.Am.Chem.Soc., <u>102</u>, 4531 (1980)
- 17. J.Baraniak, K.Lesiak, M.Sochacki, W.J.Stec, J.Am.Chem.Soc., <u>102</u>, 4533 (1980)
- 18. R.D.Sammons, P.A.Frey, J.Biol.Chem., 257, 1138 (1982)
- 19. B.A.Connoly, F.Eckstein, H.H.Füldner, J.Biol.Chem., <u>257</u>, 3382 (1982)
- 20. G.Lowe, G.Tansley, P.M.Cullis, J.Chem.Soc., Chem.Commun., in press

(Received in UK 22 July 1982)